

取扱説明書

強陽イオン交換クロマトグラフィー充填剤 セルファイン MAX GS

概要

セルファイン MAX はセルファインクロマトグラフィー充填剤の次世代のブランドネームです。強陽イオン交換クロマトグラフィー充填剤セルファイン MAX GS は高流速条件で操作可能な高度に架橋された充填剤です。優れた性能を発揮するようにリガンド濃度を最適に調節させています。これらの特長によってダウンストリームプロセスの効率化を実現することができます。特に抗体医薬の凝集体の除去に優れたパフォーマンスを発揮します。

セルファイン MAX GS の特長

C/V// I// III/IX do 0/1/1X				
特徴				
イオン交換タイプ	強陽イオン交換基(グラフトポリマータイプ)			
ベース基材	高度架橋セルロース粒子			
平均粒径	ca. 40 - 130 um (平均 90um)			
イオン交換容量	0.09~0.15 m mol /ml			
操作流速	600 cm/h(0.3 MPa) 内径30 cm x 高さ20 cm 純水24°C			
静的吸着量	≧ 100 mg / ml (リゾチーム)			
動的吸着量	≧ 70 mg /ml (ポリクロ—ナル抗体 10 %ブレークスル—時)			
pH 安定性 (20°C, 1週間)	2 - 13			
化学安定性	一般的なバッファーなどで安定 0.5 M NaOH で安定			
保存方法	20 %エタノール			

カラムへの充填方法

- 1. 目的のカラム体積になるように充填する体積を計算する。
 - (a) 充填カラム体積 = カラム断面積 (cm²) x カラム高さ (cm)
 - (b) 必要となるカラム沈降体積 = 充填カラム体積 x (1.15~1.20)
- 2. 純水で充填剤を洗浄する (バッファーでも良い)。
- 3. 純水、0.1M NaCl または適切な充填バッファーで 40 60 % (v/v) スラリーを調製する。
- 4. 緩やかに撹拌する。必要であれば脱気しながら撹拌する(室温、1時間)。
- 5. カラム準備
 - (a) カラム供給業者の取扱説明書に従ってカラムを準備する。
 - (b) カラムフィルターは空気を除去するため、充填バッファーまたは 20%エタノールで 湿らせておく。
 - (c) 充填バッファーをカラムに加え、カラム出口からバッファーが出ることを確認する。カラム底部から 0.5~1 cm の高さ程度まで充填バッファーが流れたら、カラム出口を閉める。
- 6. 気泡を発生させないように注意しながらスラリーをカラムに注ぎ込む。容量によって は充填用リザーバーを準備する。
- 7. カラム上部フィルターを装着する。このとき気泡を入れないように注意すること。

- 8. カラム出口を開けて 1000cm/h または 0.3MPa の操作圧力で溶出バッファーを 10 分間、ポンプで通液する。注意:カラムの限界圧力は超えないようにすること。
- 9. 通液時のカラム高さをマークしておく。次いでポンプを停止して、カラム出口を閉止する。
- 10. 上部フィルターの配管を外す。上部フィルターの入口を開けた後、上部フィルターをマークした位置まで下げて、ゲルを圧縮させる。
- 11. 気泡が入らないように上部フィルターへ配管を接続する。サンプルをロードする前に 10 カラム体積 (CV) の吸着バッファーを通液してカラムを平衡化する。

固定長カラムへの充填方法

- 1. 目的のカラム容量になるように充填する体積を計算する。
 - (a) 充填カラム体積 = カラム断面積 (cm²) x カラム高さ (cm)
 - (b) 必要となるカラム沈降体積 = 充填カラム体積 x (1.15~1.20)
 - (c) 注意: 充填用リザーバーを使用する場合、目的のカラム体積になるように十分な 充填剤を準備すること
- 2. 純水でゲルを洗浄する (バッファーでも良い)。
- 3. 純水または充填バッファー(高塩濃度)で40 60 % (v/v) スラリーを調製する。
- 4. 室温で緩やかに撹拌する。必要であれば脱気しながら撹拌する(室温、1時間)。
- 5. カラム準備
 - (a) カラム供給業者の取扱説明書に従ってカラムを準備する。
 - (b) カラムフィルターは空気を除去するため、充填バッファーまたは 20%エタノールで 湿らせておく。
 - (c) 充填バッファーをカラムに加え、カラム出口からバッファーが出ることを確認する。 カラム底部から 0.5~1 cm の高さ程度まで充填バッファーが流れたら、カラム出口 を閉める。
- 6. 気泡を発生させないように注意しながらスラリーをカラムに注ぎ込む。容量によって は充填用リザーバーを準備する。
- 7. カラム上部フェイルターを装着する。
- 8. カラム出口を開けて 1000cm/h または 0.3MPa の操作圧力で溶出バッファーを 10 分間、ポンプで通液する。注意:カラムの限界圧力は超えないようにすること。
- 9. ポンプを停止して、カラム出口を閉止する。
- 10. 上部フィルターの配管を外す。充填用リザーバーを外す。必要であれば過剰な充填剤 を充填用リザーバー から取り除いておくこと。
- 11. 上部フィルターを装着した後、気泡が入らないように上部フィルターへ配管を接続する。サンプルをロードする前に 10 カラム体積 (CV) の吸着バッファーを通液してカラムを平衡化する。

操作ガイドライン

充填後の評価方法

付録1を参照のこと。

一般的な使用方法

一般的にセルファイン MAX 強陽イオン交換クロマトグラフィー充填剤は比較的低いイオン強度(例えば 0.1M NaCl 以下)のバッファーで吸着させる。また pH 条件は 4.0~9.0 の範囲内で吸着する。吸着量は吸着バッファーの pH と電気伝導度に強く影響する。タンパク質が正の電荷を帯びているか等電点付近の場合に充填剤に吸着する。吸着したタンパク質

等の成分はステップワイズで高塩濃度のバッファーで溶出するか、リニアグラジエントに よって溶出する。

サンプルの準備とサンプルロード

サンプルに存在する不溶物を遠心分離かフィルターで取り除く。サンプル濃度は1 - 20 mg/ml になるように吸着バッファーや吸着バッファーと同等のイオン強度、pH になるようなバッファーで調製しておく。必要であればサンプルを透析、脱塩フィルター、脱塩カラムなどで脱塩して、目的のイオン強度になるように調製する。

推奨バッファー

吸着バッファー: 0.01-0.05 M 酢酸 Na(pH 4 - 6)または 0.01-0.05 M リン酸または Tris-HCl(pH 6 -9)

溶出バッファー: 0.1 - 2.0 M 塩化ナトリウム入り吸着バッファー.

その他の一般的なバッファーも使用可能と思われる。タンパク質の精製に関してさらに 情報を得たい場合は文献などを参考にすること。

使用後の再生と平衡化

タンパク質の分離精製後、5 CV の高塩濃度バッファー(1-2 M NaCI)で洗浄する。次いで 5 CV(または pH と電気伝導度が一定になるまで)の吸着バッファーで平衡化する。

脱パイロジェン

5 CV の 0.2M NaOH 水溶液でカラムを洗浄し、16 時間放置した後、エンドトキシンを含まない水または平衡化バッファーで洗浄する。

エンドトキシンの除去には 0.2 M NaOH-20% EtOH が効果的である。さらに 0.2 M NaOH-90% EtOH であれば、2 時間でエンドトキシンを減少させることができる。

化学安定性および物理的安定性

以下の化学薬品に安定:

多くの塩類(NaCl, $(NH_4)_2SO_4$ など)、 アルコール類(30 %(v/v) イソプロパノール, 70 %(v/v) エタノール)、尿素(6 M) およびグアニジン-HCl(6 M) pH 2-13 の条件で 20 °C、1 週間で安定

定置洗浄 (CIP)

0.5M NaOH で 10 CV の洗浄条件で、少なくとも 100 回後の繰り返し試験後も、性能は維持されていた。

操作流速

セルファイン MAX GS は高度に架橋されたセルロース粒子をベース基材としている。このため高流速でも安定的に使用できる。

内径 2.2cm x 高さ 20 cm のカラムにおいて、0.3MPa 以下の操作圧力で流速 1000cm/h を 通液することができる。

内径 30cm 以上 x 高さ 20 cm のカラムにおいて、0.3MPa 以下の操作圧力で流速 500cm/h を通液することができる。

保存方法

密閉した容器内で常温保存が可能。凍結しないこと。

pH2 - 13 の条件において、常温で 2 週間以内でバルクおよびカラムの状態で保存が可能。 0.5M NaOH の条件において、 20° C以下の温度で 2 週間以内の保存が可能。長期保存する場合、20%エタノールを含む中性バッファーで、2 - 25° Cで保存する。

保証期限

製造日から5年。

参考文献

- 1. Harris, E.L.V. and Angal, S., *Protein Purification Methods: A practical Approach*. New York: Oxford University Press, 1989.
- 2. Janson, J.-C. and Ryden, L., *Protein Purification: Principles, High Resolution Methods, and Applications.* 2nd ed. New York: John Wiley & Sons, Inc., 1998

ご注文の情報 (カタログ No.)

Media type	容量					
	MC* 1mL x 5	MC 5mL x 5	100 mL	500 mL	5 L	10 L
Cellufine™ MAX GS	21300-51	21300-55	21300	21301	21302	21303

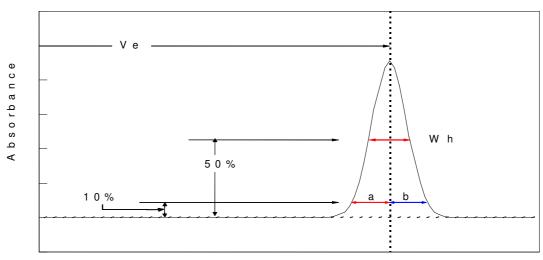
MC = S = D = D = D

JNC 株式会社

ライフケミカル事業部

東京都千代田区大手町二丁目2番1号 TEL:03-3243-6150 Fax:03-3243-6219

e メール: cellufine@jnc-corp.co.jp


https://www.jnc-corp.co.jp/fine/jp/cellufine/

付録 1: セルファイン充填後のカラム評価方法

カラムの充填状態は理論段プレート数(N)、理論段数相当高さ(HETP)、非対称性 (As)などの指標を使用して評価します。これらの評価指標は、測定条件の影響を受けます。たとえばカラムの直径/高さの違い、配管、溶媒サンプル量、流速、温度などの変化などによって変化します。したがって、毎回同じ測定条件を使用してカラム充填後の評価を行って同等性を確認する必要があります。

パラメーター	条件	
サンプルロード量	カラム体積の1 % (最大 2.5%) の液量	
サンプル組成	1-2 %(v/v) アセトン (移動相:水)	
	1 M NaCl (移動相:0.1 - 0.3M NaCl 溶液)	
流速	~30 cm/h (X mL/hr/column cross section)	
検出器	吸光度 OD 280nm (アセトンの場合) 電気伝導度 (NaCl の場合)	

Volume or Time

計算式 HETP = L/N N = 5.54 x (Ve/Wh)² As = b/a

L	カラム高さ [cm or m]
V _e	溶出時間(または溶出体積)
W _h	ピーク高さの半値時のピーク幅
a, b	ピーク高さの 10%高さにおける
	(a) 中心より前半部のピーク幅
	(b) 中心より後半部のピーク幅
注意	単位は合せて計算すること。

一般的に、理論段数は 3,000N/m を超えていれば良好とされております。また非対称性 (As) は 0.7~1.5 の範囲にあれば良い状態だとされております。