

An affinity chromatography resin designed for the isolation of immunoglobulins, including monoclonal antibodies (mAb) from complex matrices, such as cell culture supernatant and serum/plasma.

Cellufine SPA-HC resin is based on a spherical highly cross-linked cellulose bead functionalized with an alkali stable rProtein A affinity ligand. The resin shows excellent flow properties, low ligand leachate levels, high dynamic binding capacity and good retention of binding after multiple cycles of base cleaning in place (CIP) and re-use. The highly cross-linked cellulose base beads were developed to accommodate the higher flow rates required to meet the demands of future high productivity purification workflows. This new high-performance affinity resin accelerates development of efficient purification processes for downstream purification of therapeutic monoclonal antibodies. Resin properties are summarized in Table 1 below.

| Property                 | Characteristic                                                                                   |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------|--|--|
| Ligand                   | Alkali-stable rProtein A affinity ligand produced in <i>E.coli</i>                               |  |  |
| Matrix                   | Highly cross-linked cellulose beads                                                              |  |  |
| Particle size            | Average 70 μm diameter                                                                           |  |  |
| Ligand coupling method   | Coupling via formyl groups on resin                                                              |  |  |
| Flow velocity            | $\ge$ 650 cm/h (0.3 MPa) with 10 cmID x 20 cmL Column                                            |  |  |
| Dynamic binding capacity | $\geq$ 70 mg/ml (DPC C with Polyclopal IgC) 1                                                    |  |  |
| (DBC)                    | $\geq$ 70 mg/mi (DBC C <sub>10</sub> with Polycional igG) ·                                      |  |  |
| Recommend CIP solution   | 0.1 M NaOH                                                                                       |  |  |
| Temperature stability    | 4 - 50 °C No significant change in performance after 1-week storage.                             |  |  |
| Storage                  | 2 - 8 $^{\circ}$ C in 20 % (v/v) ethanol up to 2.5 years provisionally.                          |  |  |
|                          | No significant change in performance after 1-week storage in 30 %                                |  |  |
| Chemical stability       | (v/v) isopropanol, 20 – 70 % (v/v) ethanol, 8 M Urea, 6 M Guanidine-<br>HCL or 0.1 M Acetic acid |  |  |
| pH working range         | 3 - 12                                                                                           |  |  |

#### Table 1, Performance characteristics of Cellufine SPA-HC

<sup>1</sup> DBC C<sub>10</sub> measured at 10 % break through point at a residence time of 6 min using human polyclonal gamma globulin (Human IgG for infusion).

#### High dynamic binding capacity comparison with other commercial media

Human polyclonal pAb dynamic binding capacity (DBC) was compared to commercial rProtein A resins and showed that Cellufine SPA-HC has one of the highest adsorption capacities available to support IgG capture in bioproduction. Data comparing SPA-HC to an 85  $\mu$ M crosslinked agarose bead over a wide range of residence times is summarized in Figure 1. Table 2. shows a wider resin comparison at 4 and 6 min residence times.



Fig.1, pAb DBC comparison to a commercial Protein A resin

|--|

|                         | Mecha              | nical feature                   | pAb 10% DBC (mg/mL) |       |
|-------------------------|--------------------|---------------------------------|---------------------|-------|
| Resin Base polymer      | Bead size*<br>(μM) | Flow rate**<br>(cm/h at 0.2MPa) | 4 min               | 6 min |
| Cellufine SPA-HC        | 70                 | 200                             | 67                  | 72    |
| Cross-linked agarose    | 85                 | 220                             | 57                  | 68    |
|                         | 60                 | 130                             | 75                  | 79    |
| Polyvinyl ether polymer | 50                 | -                               | 52                  | 55    |
| Polymethacrylate        | 45                 | 120                             | 68                  | 75    |
| Methacrylic polymer     | 50                 | 100                             | 67                  | 71    |
| Cross-linked cellulose  | 75                 | 260                             | 60                  | 69    |

\*Bead size was taken from vendor information except for Cellufine SPA-HC.

\*\*Flow rate data was taken from a published report (see J. Chro.A 1554 (2018) 45-60). A 11 mmID column was used at a bed height of 10 cmL. The data for Cellufine SPA-HC was extrapolated from the above experimental data according to the column dimensions.

A pre-packed 1 mL column (6.7 mmID x 3 cmL) was equilibrated in 20 mM Na-Phosphate buffer + 0.15M NaCl at pH 7.5. Polyclonal human antibody (pAb) stock solution (50 mg/mL Human IgG for infusion) was adjusted to 5 mg/mL IgG concentration with equilibration buffer and filtered with a 0.22  $\mu$ M pore size bottle top filter to remove particulates. DBC was measured at 10% breakthrough point.

### Purification of mAb from CHO cell culture samples

Cellufine SPA-HC has also demonstrated high dynamic binding capacity with a human mAb sub-type 1 (see Figure.2) indicating that this new resin can be used for efficient mAb purification workflows.



Human pAb (IgG for infusion) was purchased commercially. Human monoclonal antibody IgG1 was purified from CHO cell culture.

mAb's with a range of isoelectric points (pI) and sub-types were used to investigate whether the molecular charge state had any impact on the dynamic binding capacity of the resin. The results indicate that Cellufine SPA-HC can adsorb mAb's with a wide range of pI's and show higher DBC capacity compared to an 85  $\mu$ M high capacity agarose competitive resin. A summary is shown in Figure 3, below.



Cellufine<sup>™</sup> is the trademark of JNC Corporation, Tokyo, Japan

A mAb expressed in CHO cell culture was captured from the clarified supernatant, adjusted to pH 7.5 and 15 mS/cm conductivity with 1 M Tris base and 1 M NaCL. Sample volume was also adjusted for the antibody titer (1.25 g/Lt.) to target a load of 80% of the 10% DBC measured for the 4 min. residence time. After loading, the 1 mL columns were washed down to baseline with 10 CV equilibration buffer. Retained mAb was eluted with 10 CV of 60 mM Sodium Acetate pH 3.0. The collected fractions were neutralized with 1 M Tris base and tested for; a) mAb recovery (by A280), b) ppm CHO-HCP by ELISA (P/N F550 Cygnus Technologies, Southport, NC) and c) % aggregates in the recovered mAb fractions by SEC analysis. A full summary of the recovery and contaminant levels are shown in Table 2, below.

| Sample                  | mAb<br>Load<br>(mg/mL) | Elution<br>CV | % Yield | CHO-HCP<br>(ppm) | Leached<br>rProtein A<br>(ppm) | %<br>Aggregates<br>by SEC |
|-------------------------|------------------------|---------------|---------|------------------|--------------------------------|---------------------------|
| Load                    | -                      | -             | -       | 8.68 x 10⁵       | -                              | -                         |
| SPA-HC                  | 53                     | 3.0           | 89      | 1800             | 4                              | 1.4                       |
| Cross linked<br>Agarose | 51                     | 3.9           | 89      | 1820             | 8                              | 1.9                       |

## Table 2, mAb purification summary

This study shows that a mAb derived from CHO culture supernatant was efficiently captured by Cellufine SPA-HC achieving a high level of impurity removal in this first capture step of a purification workflow.

## Elution pH screening in high throughput format

Screening for elution pH was carried out in a high throughput format using a centrifugal spin device (Ultrafree MC with a 0.45  $\mu$ M pore size filter, EMD Millipore) as follows; 1) pipet 0.02 mL of a 50% (v/v) slurry of the resin to test into the above device, 2) wash 2 x with 0.4 mL of loading buffer (20 mM Na Phosphate buffer + 0.15 M NaCl at pH 7.5), 3) Load with 0.4 ml of 5 mg/mL purified Gamma globulin IgG in loading buffer, 4) Wash 2 x with 0.4 mL of load buffer, 5) Serial elute with 0.1M Glycine pH 5.0, 4.5, 4.0, 3.75, 3.5, 3.4, 3.3, 3.2, 3.1 and final 3.0. 6) Collect the filtrate from each elution step in a multiwell plate (low UV acrylic, Corning) and measure the eluted protein at 280 nm in a UV plate reader (Molecular Dynamics).

Data is summarized in Figure 4 below for Cellufine SPA-HC, cross-linked agarose (85  $\mu$ M bead size), polymethacrylate (45  $\mu$ M bead size) and a cross-linked cellulose (75  $\mu$ M bead size).



#### Figure 4, Elution pH screening in high throughput format

The above result shows that Cellufine SPA-HC and the polymethacrylate based resin both show peak elution at pH 3.5 and the other two resins at pH 3.8. This difference in elution pH presumably reflects the structure of the different rProtein A affinity ligands on these commercial resins. This methodology is a very quick way to screen elution pH and uses very little material.

#### Base Stability and CIP – Cycle to Cycle CHO-HCP "cross-over":

Cleaning in place (CIP) with base is routinely applied during cycles of re-use of rProtein affinity resins. Cellufine SPA-HC has been evaluated for 0.1 base CIP for up to 150 cycles of re-use. Results are summarized in Figure 4 below.



Figure 4, 0.1M NaOH CIP study with 15 min contact for 150 cycles of re-use.

Figure 4 shows high retention (>95%) of DBC after 150 cycle 0.1M NaOH CIP. The capacity at cycle zero was 75 mg/mL and changed to 72 mg/mL at the end of the study.

CHO-HCP "carry-over" between cycles of re-use was also investigated by alternating mAb (from cell culture) and pAb capture and assessing the level of CHO-HCP in the pAb fraction by ELISA assay. Results are summarized in Table 3 below.

| Sample                 | CHO-HCP | % HCP Clearance | % "Carry-over" to |  |
|------------------------|---------|-----------------|-------------------|--|
|                        | (ppm)   | by SPA-HC       | next cycle        |  |
| Load                   | 777,000 |                 |                   |  |
| mAb Elution Cycle 1    | 306     | > 99            | 28.2              |  |
| pAb Elution – NO CIP   | 86      | -               |                   |  |
| mAb Elution Cycle 2    | 238     | > 99            | 5 5               |  |
| pAb Elution – 0.1M CIP | 13      | -               | 5.5               |  |
| mAb Elution Cycle 3    | 260     | > 99            | 3.2               |  |
| pAb Elution – 0.5M CIP | 8       | -               |                   |  |

Table 3, Summary of CHO-HCP "carry over" between cycles of re-use

This study showed a high CHO HCP clearance over the three cycles of re-use. There was some "carry over" between cycles of re-use at very low levels which was further reduced by base CIP in-between each of cycle of re-use.

## Base Stability and CIP – rProtein A Leachate after 150 cycle of 0.1 M NaOH CIP

A 1mL Cellufine SPA-HC mini-column was equilibrated in 0.02M Tris-HCl buffer, 0.15M NaCl pH 7.5 and loaded with 60 mg/mL polyclonal antibody (80% of 10% breakthrough DBC of 75 mg/mL at 6 min residence time) at a flow rate of 0.125 mL/min. The retained fraction was eluted with 60 mM Sodium Acetate pH 3.0. After a 100 mM wash with Acetic acid the column was subjected to cleaning in place with 0.1M NaOH contact for 15 min.

Recovery of DBC (> 95%) was also maintained over all 150 cycles CIP with 0.1 M NaOH and showed very low Protein A leachable levels (< 9 ppm). A summary of the results from this study are shown in Figure 5, below.

## Fig.5, <u>Summary of elution mAb recovery study and measurement of rProtein A leachate</u> over 150 cycle of CIP and re-use.



Pressure/Flow properties in a pilot process column (1-2L)

As Cellufine SPA-HC is based on a highly cross-linked cellulose bead structure and is very adaptable for use in conventional manufacturing with large scale columns. Pressure-flow rate studies indicate that Cellufine SPA-HC developed back-pressure <0.3MPa at 650 cm/h in a 10cmID x 20 cmL bed height (1.57 L) column. A summary of the back-pressure/flow curves measured at a range of flow rates up to 750 cm/h is shown in Figure 6, below.



Figure 6, Pressure/Flow curve for SPA-HC packed pilot scale process column

Pressure/Flow test was carried out in a 10 cmID x 20 cmL column (Axichrom 10/300, 1.57L CV, GE healthcare) with a water mobile phase at 20-25 °C.

The above data suggests that Cellufine SPA HC resin packed in a pilot process column can be operated at a residence time of 2.4min at < 0.3MPa with a flow rate of 650 cm/h and achieve a mAb capture loading of 50 mg/mL from a clarified CHO cell sample.

# **Recommended Polishing Steps after rProtein A Capture**

After Protein A capture the following contaminants need to be removed in the subsequent "polishing" steps; a) CHO host cell protein (HCP), b) leached Protein A ligand, c) residual dsDNA and d) mAb aggregates > 300 kDa molecular weight. In some cases, removal of mAb dimers is also required. Cellufine resins are available to remove these contaminants and are listed below.

**Cellufine MAX IB**, a new mixed mode primary amine based hydrophobic modified resin for <u>flow through</u> removal of CHO- HCP, leached Protein A and mAb aggregates.

- Adjust to pH 7.0 with Tris base,
- Tolerant of a wide conductivity range up to 0.2 M NaCl.

**Cellufine MAX GS**, a dextran coated cation exchange resin with high binding capacity for <u>bind and elute</u> removal of dimers and aggregated mAb's.

• Adjust to pH 4.5 with Tris base and lower conductivity < 5 mS/cm.

**Cellufine MAX Qh**, a high capacity anion exchange resin that can be used to remove HCP, leached Protein A and residual dsDNA in a <u>flow through format</u>.

• Adjust to pH 8.5 with Tris base and conductivity ~12 mS/cm.

More details on these resins can be found on the web site at; <u>http://www.jnc-corp.co.jp/fine/en/cellufine/</u>

#### Storage

Store unopened container at 2 – 8 °C. **Do not freeze**.

Adsorption capacity did not change with a month storage at an elevated temperature of 40 °C which corresponds to 6-month storage at room temperature (25oC) and 2.5-year storage at 10 °C.

Longer storage should be in 20 % (v/v) ethanol, at 2 - 8 °C. **Do not freeze.** 

# Technical Data Sheet – Cellufine SPA-HC Affinity Ordering Information

| Description       | Quantity               | Catalogue No. |  |
|-------------------|------------------------|---------------|--|
|                   | 1 x 1 mL (mini-column) | 21900-11      |  |
|                   | 5 x 1 mL (mini-column) | 21900-51      |  |
|                   | 1 x 5 mL (mini-column) | 21900-15      |  |
| Colluting CDA LIC | 10 mL                  | 21900         |  |
|                   | 50 mL                  | 21901         |  |
|                   | 500 mL                 | 21902         |  |
|                   | 5 L                    | 21903         |  |
|                   | 10 L                   | 21904         |  |

# **Purchase/Technical Support**

(North America & Europe) JNC America, Inc. 555 Theodore Fremd Ave, Rye, NY 10580 Tel: 914-921-5400 Fax: 914-921-8822 Email: <u>cellufine@jncamericany.com</u> (Asia & Others) JNC Corporation Life Chemicals Division 2-1, Otemachi 2-Chome, Chiyoda-ku Tokyo 100-8105 Japan Tel: +81 3 3243 6150 Fax: +81 3 3243 6219 Email: <u>cellufine@jnc-corp.co.jp</u>