

离子交换层析填料

Cellufine MAX Q-hv

技术数据表

JNC 株式会社

生命化学事业部

东京都千代田区大手町二丁目2番1号

TEL: 03-3243-6150 Fax: 03-3243-6219

电子邮箱: cellufine@jnc-corp.co.jp

http://www.jnc-corp.co.jp/fine/cn/cellufine/

技术数据表

Cellufine MAX Q-hv

Cellufine MAX Q-hv 是一种强阴离子交换层析填料。使用对高度交联的颗粒实施表面修饰的底物载体。因此具有卓越的耐压性。设计的配体浓度确保 Cellufine MAX Q-hv 特别是对多糖疫苗的纯化有效。

Cellufine MAX Q产品系列包括具有优异溶出性能的 Cellufine MAX Q-r,具有卓越吸附性能的 Cellufine MAX Q-h。Cellufine MAX Q-hv 在保持吸附性能的同时,采用了旨在改善诸如核酸和多糖、病毒颗粒这些大尺寸目标物质的溶出性的配体设计。因此,可以期望与以往的 MAX Q-r、MAX Q-h 有不同的分离行为。

以高流速、高吸附为特征的填料

Cellufine MAX Q-hv 是高流速型的 Cellufine。通过 JNC 独创的卓越的交联技术,设计了能够在高流速条件下使用的具有优异牢固性的填料。并且还采用表面修饰技术,大幅度提高了配体的利用效率。通过这种技术,实现了卓越的动态吸附性能。

Cellufine MAX 的底物载体

Cellufine MAX Q-hv 的原料是纤维素,纤维素是一种具有独特的晶体结构的天然多糖,其特征与具有非晶体结构的琼脂糖不同。由于这个特征,如图 1 的 SEM 照片所示,纤维素具有很大的细孔。因此,纯化对象物质在细孔内快速扩散,表现出优异的吸附性能。

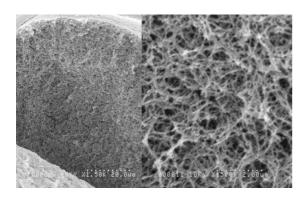


图1 底物载体的SEM照片

Cellufine MAX Q-hv 的化学结构

Cellufine MAX Q-hv 的配体结构如图 2 所示。

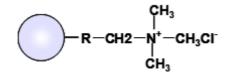


图2 Cellufine MAX Q-hv的配体结构

Cellufine MAX Q-hv 的特点

基本特征如表 1 所示。所有 Cellufine MAX 离子交换 层析填料的底物载体都采用葡聚糖修饰的平均粒径为 90um 的高度交联的纤维素颗粒。Cellufine MAX Q-hv 调整了离子交换容量、细孔尺寸等,确保最适合用于疫苗的主要成分多糖类和病毒颗粒的纯化。

	MAX Q-r	MAX Q-h	MAX Q-hv
离子交换基团	强阴离子 / -N+(CH₃)₃		
底物载体	葡聚糖修饰的高度交联纤维素颗粒		
粒径	ca. 40 - 130 um (平均 90um)		
离子交换容量 meq/ml	0.10~0.20	0.13~0.22	0.04~0.07
操作流速	600 cm/h(0.3 MPa) I.D.30 cm-L20 cm、 流动相:纯化水 24°C		
动态吸附载量 BSA mg/ml	> 110	> 180	> 120
能够使用的 pH 值	2-12	2-12	2-12
pH 稳定性 (30°C, 1 周)	2-12	2-12	2-12
化学稳定性	对常规使用的缓冲液表现稳定		
定置洗脱	1 M NaOH		0.5M NaOH
保存液	20 % 乙醇水溶液		

表 1 Cellufine MAX Q-hv 的特点

高动态吸附载量与高回收率

Cellufine MAX Q-hv 是对多糖类的纯化很有效的强阴离子交换层析填料。Cellufine 产品系列包含多个种类的强阴离子交换层析填料,其中在多糖类的纯化方面,Cellufine MAX Q-hv 显示出高动态吸附载量与良好的回收率(表 2)。

	动态吸附载量 [mg/mL]	回收率 [%]
MAX Q-hv	22	109
MAX Q-h	17	72
MAX Q-r	9	95

表 2 源自肺炎链球菌的多糖的吸附性能

使用经过部分纯化的源自肺炎链球菌的多糖,求出动态吸附载量与回收率。并求出穿透点为20%时的动态吸附载量。

层析条件

色谱柱: 6.7 mmID×30 mmH (1.06 mL) 流速: 0.212 mL/min (RT 5 min, 36 cm/h)

吸附缓冲液: 50 mM 磷酸钠, pH6.0

溶出缓冲液: 50 mM 磷酸钠 + 1 M NaCl, pH6.0

化学稳定性及定置洗脱

纤维素作为一种理化性质稳定的天然化合物被广为人知。Cellufine 源自纤维素,因此对化学药剂、酸性、碱性均显示稳定性。能够将 0.5M- NaOH 水溶液用于Cellufine MAX Q-hv 的定置洗脱(CIP)。洗脱后将使用后的填料保存在 20 %的乙醇内,确保环境温度为 2-25℃。

能够使用的化学药剂等

- ✓ 乙醇 (70%)
- ✓ 异丙醇(30%)
- ✓ 盐酸胍(6M)
- ✓ 尿素 (6M)
- ✓ 表面活性剂

在定置洗脱液内的稳定性

Cellufine MAX Q-hv 在经常用于定置洗脱的 0.5 M NaOH 中表现稳定。浸渍 7 天后仍能保持性能(表 2)。由该结果可知,如果在定置洗脱时设置 15 分钟的暴露时间,进行相当于 672 次的定置洗脱后仍能保持稳定。

保存天数	BSA 吸附载 量(mg/mL)	离子交换容量 (meq/mL)	N 元素 %
0	155	0.06	0.9
7	146	0.05	0.9

表 2 0.5 M NaOH 浸渍后的稳定性

应用事例:多糖疫苗的纯化

试样制备

将肺炎链球菌 Streptococcus pneumonia 血清型 19F (ATCC49619) 接种到羊血琼脂培养基内,在厌氧

JNC CORPORATION

条件下培养 16 小时后,再接种到 2000mL 的 Brain Heart Infusion 培养基内,并在 37 ℃下培养 20 小时。

在培养液中添加 10%的脱氧胆酸钠,在 37 ℃下培养 16 小时,促使溶菌。实施离心分离 (12,000 rpm, 15 分钟,4 ℃),回收上清液。并采用 0.45 μm 的醋酸纤维素膜(Cellulose Acetate Membranes)过滤器过滤该上清液。通过超滤 (Vivaflow 200, MilliQ, MWCO 100k)浓缩滤液。

在供试品中添加相当于 50%饱和溶解度的硫酸铵,在 4 \mathbb{C} 下培养 16 小时。通过离心分离(12,000 rpm, 15 分钟, 4 \mathbb{C})清除结晶颗粒,并对采用 0.2 μ m 的滤膜过滤器过滤后的溶液实施层析用试样上样。

层析纯化

- 1. 采用 Cellufine MAX Butyl HS 的第 1 阶段纯化 操作方法请参考 Cellufine MAX Butyl HS 的使用说明书。
- 2. 采用 Cellufine MAX Q-hv 的第 2 阶段纯化 使用 Cellufine MAX Q-hv,按照以下条件实施层析纯化。

工序	溶液	容量
平衡	缓冲液 A	5 CV
试样上样	试样溶液	-
洗脱	缓冲液 A	15 CV
溶出	缓冲液 B	10 CV
洗脱	缓冲液 A	10 CV
定置洗脱	0.5M NaOH 溶液	10 CV
平衡	超纯化	20 CV

色谱柱: 6.7 mmID×30 mmH (1.06 mL)

流速: 0.424 mL/min (RT 2.5 min, 72 cm/hr)

缓冲液 A: 50 mM 磷酸钠, pH 值 6.0

缓冲液 B: 50 mM 磷酸钠, 1.0 M 氯化钠, pH 6.0

3. 纯化结果

使用蒽酮-硫酸法对多糖进行定量。通过采用 Protein assay kit (Bio-Rad) 的 Bradford 法对蛋白质进行定量。使用 BioSpec nano (Shimazu)测量 260 nm 的吸光度,按照 1 AU=50 μg/mL 计算核酸量。

	10% DBC	多糖	多糖	蛋白质	核酸
	mg/mL	回收率%	纯度%	μ g/mL	μ g/mL
上样液	-	-	76	5.1	162
纯化后	6.4	98	99	N.D.	4

订购说明

产品名称	包装尺寸	目录编号
Cellufine MAX Q-hv	5 x 1 mL 迷你色谱柱	22100-51
	1 x 5 mL 迷你色谱柱	22100-15
	100 mL	22100
	500 mL	22101
	5 L	22102
	10 L	22103

关于购买与技术支持的服务窗口

(北美)

JNC America Incorporated

555 Theodore Fremd Avenue, Suite C-

206

Rye, NY 10580 USA TEL: 914-921-5400

FAX: 914-921-8822

E-mail: cellufine@jncamericany.com

(日本、亚洲、其他)

JNC株式会社

生活化学事业部

〒100-8105

东京都千代田区大手町二丁目2番1号

新大手町大楼 9 楼 Tel: 03-3243-6150

Fax: 03-3243-6219

E-mail: cellufine@jnc-corp.co.jp